Exercice sur les tableaux de variation d'une fonction, pour la classe de seconde Forme canonique d'un polynôme du second degré, sens de variation d'une fonction.

Tableau de variation de f : x → a(x-α)²+β.

Mode d'emploi

Pour chaque exercice une fonction f définie sur un intervalle vous est proposée.
Dans la première partie vous devez déterminer les réels a , \alpha et \beta tels que f(x)=\text{a}(x-\alpha)^2+\beta
Dans la deuxième étape vous devez déterminer le tableau de variation de la fonction f. Pour cela cliquez plusieurs fois de suite au centre du tableau sur la cible    jusqu'à obtenir le modèle adapté à la fonction f, puis complétez ce tableau de variation.
En cas d'erreur, vous pouvez choisir d'utiliser l'aide en cliquant sur le point d'interrogation ; dans ce cas la courbe de la fonction f est tracée sur la figure GeoGebra. Si malgré cette aide vous n'avez toujours pas trouvé le bon tableau, recliquez sur le point d'interrogation pour obtenir la solution.

Le bouton permet de rafraîchir la figure GeoGebra si son affichage est défectueux.
Attendez le chargement complet de la figure GeoGebra en bas de page, avant de cliquer sur le bouton "Démarrer la série d'exercices".



               
x  
 
f(x)
 





Ici devrait s'afficher l'appliquette Java créée avec GeoGebra - Il semble que Java ne soit pas installé sur votre ordinateur, merci d'aller sur www.java.com . A moins que par séritée, le plugins Java soit désactivé sur votre navigateur, il faut alors l'activer.


 Exercices réussis sans erreur : 0 sur 0 




Conception et réalisation : Joël Gauvain. Créé avec GeoGebra.



Contrat Creative Commons